Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear diffusion of dislocation density and self-similar solutions

We study a nonlinear pseudodifferential equation describing the dynamics of dislocations. The long time asymptotics of solutions is described by the self-similar profiles.

متن کامل

Self-similar solutions to a density-dependent reaction-diffusion model.

In this paper, we investigated a density-dependent reaction-diffusion equation, u(t)=(u(m))(xx)+u-u(m). This equation is known as the extension of the Fisher or Kolmogoroff-Petrovsky-Piscounoff equation, which is widely used in population dynamics, combustion theory, and plasma physics. By employing a suitable transformation, this equation was mapped to the anomalous diffusion equation where th...

متن کامل

Self-Similar Solutions for Nonlinear Schrِdinger Equations

We study the self-similar solutions for nonlinear Schrödinger type equations of higher order with nonlinear term |u|u by a scaling technique and the contractive mapping method. For some admissible value α, we establish the global well-posedness of the Cauchy problem for nonlinear Schrödinger equations of higher order in some nonstandard function spaces which contain many homogeneous functions. ...

متن کامل

Self - Similar Solutions for Nonlinear Schrodinger Equations ∗

In this paper we study self-similar solutions for nonlinear Schrödinger equations using a scaling technique and the partly contractive mapping method. We establish the small global well-posedness of the Cauchy problem for nonlinear Schrödinger equations in some non-reflexive Banach spaces which contain many homogeneous functions. This we do by establishing some a priori nonlinear estimates in B...

متن کامل

Numerical investigations on self-similar solutions of the nonlinear diffusion equation

In this paper, we present the numerical investigations of self-similar solutions for the nonlinear diffusion equation ht = −(hhxxx)x, which arises in the context of surface-tension-driven flow of a thin viscous liquid film. Here, h = h(x, t) is the liquid film height. A self-similar solution is h(x, t) = h(α(t)(x − x0) + x0, t0) = f (α(t)(x − x0)) and α(t) = [1 − 4A(t − t0)], where A and x0 are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2009

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-009-0855-8